The image of a fairly traditional Dutch construction sector is rapidly shifting to a sector that is innovating and digitalizing. Under the pressure of changing regulations regarding nitrogen and sustainability, rising procurement costs that are more and more difficult to pass on, and a shortage of skilled labour, the sector is now developing quickly.

Hi automation supports companies in the construction sector in various ways to rapidly improve their operational and financial performance. In this article, we focus on just one element of that: efficiently navigating through and processing information from the many documents that inevitably come with the activities in this sector.

The sector is inundated with documents

We are talking about tender documents, contracts, drawings, invoices, various personnel-related documents, safety reports, and compliance documents. These are just a few of the many documents this sector has to deal with. Navigating through and processing the crucial content of all these documents quickly, efficiently, and accurately is a significant challenge. The risk of errors is ever-present, especially since people are often involved. The consequences of mistakes can be significant: delays, fines, and margin losses due to failure costs. Although there is a shift towards digital document management, its implementation and maintenance remain an administrative challenge. Intelligent Document Processing (IDP) offers the solution.

What is Intelligent Document Processing (IDP)?

IDP is software that opens your document, regardless of the format (PDF, Word, hard copy, etc.), reads the content, extracts the crucial information, and potentially edits it before processing it into the various systems you use.**
A document is opened and then made accessible using OCR (Optical Character Recognition). The content is read using NLP (Natural Language Processing). Then, ML (Machine Learning) is used to understand the text and recognize the important information. Finally, this information is extracted and transported to the next step. This step can be processing into systems or a series of operations followed by processing into systems.
It does not matter if the provided documents are clearly and consistently organized (structured data) or free text (unstructured data).

The benefits are evident

Improved quality: Data processing by humans inevitably means errors, even if they are just typos. IDP does not make these mistakes.
Speed: Absorbing information, extracting the important details, and further processing takes time. IDP is many times faster than a human, with all the associated benefits for the execution of the tasks that generate the company’s revenue.
Better compliance: Compliance means working precisely according to the rules without errors or free interpretation. IDP always works precisely according to the rules and does not make mistakes, resulting in high compliance or flagging of non-compliance.
Better data analysis: Because data is processed quickly, consistently, and error-free, the basis for data analysis is of high quality, as are the insights that the analysis provides, thereby enhancing the quality of your decision-making.
Reduced employee stress: Not to be overlooked is the reduced pressure on your employees, their increased productivity, and improved job satisfaction. The work that must be done before they can start their actual tasks is taken off their hands. Your people are not only more productive but also enjoy their work more.

Customized Solutions and Seamless Integration

IDP is not a “one size fits all” solution. The Intelligent Document Processing system is fully configured for your specific situation, tailored to the types of documents you deal with and the workflows you use.
IDP integrates seamlessly with the software you currently use, such as your ERP system and project management tools. IDP automatically feeds your systems without the need for them to be adjusted. Implementing IDP ensures data the all-important consistency across various systems and departments.

What makes an implementation successful

The number one determining factor is your people. It’s important that they feel co-ownership of the change and have confidence that they can adapt to it. Four elements are crucial in this regard: (1) Understanding the reason for the change. (2) Being involved from the start. (3) Proper training so your team is proficient in using IDP technologies. (4) Establishing a “community of practice” – an environment where users share experiences and tips and tricks, and stay informed about new features and capabilities through up-to-date training materials.
The second determining factor is continuous support and maintenance. Regular updates and maintenance checks can prevent downtime and ensure the system continues to operate efficiently.
The third factor is, of course, data security. Given the sensitive nature of the documents, implementing robust security measures in your IDP system is paramount. Ensure the system complies with industry standards for data protection, so your data is safeguarded against unauthorized access and breaches.
Finally, continuous monitoring and evaluation of the IDP system’s performance are important to understand its impact on operations. Use metrics such as processing time, error rates, and user satisfaction to gauge effectiveness and identify areas for improvement. Regular assessments will help you optimize the system over time and ensure it continues to meet the evolving needs of your business.

Perhaps you already know enough to further explore the implementation of IDP in your company with us. Maybe you would like to gain some more inspiration through a few application examples. You can find these below.

 

How companies deploy IDP – some examples

 

1. Receiving, Reviewing, and Processing Invoices

Contractors and industrial companies generally work with a (large) number of subcontractors. This results in a continuous stream of work orders, assignments, purchase orders, and invoices.
Challenge:
This stream quickly becomes very large and often does not flow continuously; it proceeds in fits and starts. The effort required to handle this stream correctly quickly overwhelms the administrative department.
Consequences:
The consequences range from annoying (corrections to already made payments) to very troublesome (fines, lawsuits, subcontractors unwilling to work for the client, reputational damage).
Solution:
Intelligent Document Processing (IDP) opens incoming invoices, reads and checks the contents for completeness, and handles the reconciliation. This process is incredibly fast. When everything is complete and correct, IDP can prepare the payment order. When there are discrepancies, IDP will present them to the administration for further action.
Result:
The administration focuses on tasks that require their expertise, payments are accurate and neither late nor early, and there are no fines or lawsuits. The impact on the quality of collaboration and reputation is evident.

2. Management of Change (MOC)

Wherever work is performed, changes are implemented. Prevention is better than cure (managing the consequences of changes), but changes are also not always avoidable. This ranges from a change in scope in its most extensive form to additional or reduced work during execution.
Challenge:
MOC is highly complex and thus very prone to errors. This is because a change impacts multiple areas: from drawings and the bill of materials to the content of a job description.
Consequences:
The consequences range from substantial delays in execution, cost overruns, drawings and technical specifications that no longer match the “as-built” situation, and discrepancies between invoices and purchase orders.
Solution:
Intelligent Document Processing (IDP) supports the fast and accurate recording and processing of changes across the entire workflow.
Result:
No misunderstandings, miscommunications, unnecessary cost overruns, unnecessary delays, or incorrect settlements resulting from implemented changes.

3. Automatic Processing of Bills of Lading and Purchase Orders

Goods are delivered daily to project and task locations, accompanied by necessary paperwork such as bills of lading and purchase orders.
Challenge:
There can be a substantial influx of incoming goods, but also a substantial outgoing flow such as (contaminated) waste and equipment that requires cleaning. Traditional manual methods of receiving registration, matching with orders, and recording and following up on discrepancies can sometimes get bogged down.
Consequences:
Manual processing can lead to delays and incorrect registrations, which can result in unnecessary searches for goods that are recorded as delivered but actually were not, as well as erroneous settlements.
Solution:
Intelligent Document Processing (IDP) automates the data extraction from bills of lading and purchase orders. This ensures that all details are quickly and accurately recorded and integrated into the project’s or task’s workflow.
Result:
It becomes immediately clear whether the ordered goods have been delivered, in what quantities, and what the discrepancies are. Delays in incoming and outgoing goods flows disappear, and financial processing runs smoothly, all without the need for various corrections afterwards.

4. Automatic Processing of Invoices for Rental Equipment

Every activity within the contractor sector involves rental equipment of all types and sizes: cranes, temporary power supplies, hoses, specialized hand tools, scaffolding, lighting, and more. Often, different parties rent equipment, including the client, the main contractor, and subcontractors. Sometimes the client negotiates special contracts with rental equipment suppliers that the (sub)contractors must use and properly account for.
Challenge:
Invoices can arrive through various channels such as on paper, via email, embedded in other invoices, etc. Given the volume of invoices and the variety of conditions, administrative processing can quickly go wrong.
Consequences:
Due to the complexity, errors can easily occur: invoices are booked and paid incorrectly, special conditions are not honoured, discrepancies between rental periods and charges arise, and more.
Solution:
Intelligent Document Processing (IDP) also automates the administrative handling of rental equipment, doing so quickly and accurately. IDP ensures careful verification, prepares payments for what is correct, and flags areas where additional checks are necessary.
Result:
The use of IDP not only increases the productivity of the Administration but also enhances job satisfaction by reducing pressure and allowing time for tasks that require their expertise. Invoices are paid correctly, neither too early nor too late, resulting in good supplier satisfaction and a solid basis for potentially further improving rental conditions.

5. Accelerating Supplier, Partner and Employee Onboarding

The construction sector relies on networks and temporary relationships. Quickly integrating new suppliers, partners, and employees, and possibly later parting ways with them, is therefore crucial.
Challenge:
The initial integration of parties involves a lot of work. A manual approach is time-consuming and prone to errors.
Consequences:
If the initial integration is not done correctly, it will have lasting negative effects on mutual settlements, disruptions, and delays.
Solution:
Intelligent Document Processing (IDP) equipped with Intelligent Character Recognition (ICR) significantly improves the onboarding process for new suppliers, partners, and employees. IDP automates the extraction of essential data from documents such as invoices, contracts, and timesheets, and correctly processes this data into various systems. The technology quickly adapts to different document formats and layouts without manual configurations, ensuring seamless integration.
Result:
Fast and accurate onboarding of parties through error-free extraction and processing of essential data. This forms a foundation for productive collaboration with fewer misunderstandings, miscommunications, incorrect settlements, and delays.

 

Conclusion

The application of Intelligent Document Processing (IDP) not only enables faster, more efficient, and error-free work, but also facilitates a different way of working. IDP is one of the building blocks of a (more) autonomous operating model. The cases above represent only a fraction of what is possible. These applications have a direct impact and are ideal for becoming more familiar with the technology and expanding your imagination regarding its potential. Given the broader economic and societal developments that the sector is in the midst of, further exploration of this technology is considered to be no longer optional.

 

In all sectors, companies are dealing with an increased frequency and magnitude of disruptions. Businesses must quickly scale down and then ramp up their operations once demand returns. They have to switch product portfolios depending on the availability of components. Some of the events that have caused havock in the past decade include the Fukushima earthquake and tsunami in Japan, Suez Canal blockage, lockdowns related to Covid19 and variants, semiconductor shortages(link resides outside Axisto), staff shortages, war in Ukraine, exploding energy costs(link resides outside Axisto), high inflation.

Understandably, most of these disruptions took leadership teams by surprise. The worst of these disruptions have taken a toll on business output, revenue and profitability. Recovery can take months or even years.

Process mining provides the much-needed overview of the end-to-end supply chain and provides better insight and information for better, proactive collaboration internally and in the overall supply chain. Process mining also provides proposals for decisions with their consequences for real-time optimisation of flows.

 

FULL TRANSPARENCY

Axisto - Process MiningInstead of working with the designed process flow or the process flow that is depicted in the ERP system, process mining monitors the actual process at whatever granularity you want: end-2-end process, procure-2-pay, manufacturing, inventory management, accounts payable, for a specific type of product, supplier, customer, individual order, individual SKU. Process mining monitors compliance, conformance, cooperation between departments or between client, own departments and suppliers, etc.

OVERVIEW OF THE ENTIRE SUPPLY CHAIN

Dashboards are created to suit your requirements. These are flexible and can be easily altered whenever your needs change and/or bottlenecks shift. They create real-time insights into the process flow. At any time, you know, how much revenue is at stake because of inventory issues, what root-causes are and which decisions you can take and what their effects and trade-offs will be.

Axisto - examples of process mining dashboards

If supplier reliability is not at the target level at the highest reporting level, you can easily drill down in real-time to a specific supplier and a particular SKU to discover what is causing the problem in real-time. Suppliers could also be held to the best-practice service level of competitive suppliers.

MAKING INFORMED DECISIONS AND TAKING THE RIGHT ACTIONS

The interactive reports highlight gaps between actual and target values and give details of the discrepancies, figure A. By clicking on one of the highlighted issues, you can assign an appropriate action to a specific person, figure B. Or it can even be done automatically when a discrepancy is detected.

Process Mining - informed decisions and the right actions
Figure A, details of the discrepancies.                 Figure B, pop up to create a task

 And direct communication with respect to the action is facilitated in real-time, figure C.

Process Mining - Example of action screen
Figure C, exchanging information.

WRAP UP

Process mining is an effective tool to optimise the end-2-end supply chain flows in terms of margin, working capital, inventory level and profile, cash, order cycle times, supplier reliability, customer service levels, sustainability, risk, predictability, etc. Because process mining monitors the actual process flows in real-time, it creates full transparency and therefore adds significant value to the classic BI-suites. Process mining can be integrated with existing BI-applications and can enhance reporting and decision-making.

 

Artificial Intelligence is hot. We can hardly do anything without coming into contact, consciously or unconsciously, with forms of Artificial Intelligence. And it is becoming increasingly important. This article is an introduction to the field of Artificial Intelligence. It starts with a definition and then explores the different sub-specialties, complete with description and some applications.

WHAT IS ARTIFICIAL INTELLIGENCE?

Artificial Intelligence (AI) uses computers and machines to imitate people’s problem-solving and decision-making skills. One of the leading textbooks in the field of AI is Artificial Intelligence: A Modern Approach (link resides outside Axisto) by Stuart Russell and Peter Norvig. In it they elaborate four possible goals or definitions of AI.

Human approach:

  • Systems that think like people
  • Systems that behave like people

Rational approach:

  • Systems that think rationally
  • Systems that act rationally

Artificial intelligence plays a growing role in (I)IoT (Industrial) Internet of Things, among others), where (I)IoT platform software can provide integrated AI capabilities.

SUB-SPECIALTIES WITHIN ARTIFICIAL INTELLIGENCE

There are several subspecialties that belong to the domain of Artificial Intelligence. While there is some interdependence between many of these specialties, each has unique characteristics that contribute to the overarching theme of AI. The Intelligent Automation Network (link resides outside Axisto) distinguishes seven subspecialties, figure 1.

Seven subspecialities in AI
Figure 1, The Intelligent Automation Network distinguishes seven subspecialities within Artificial Intelligenge

Each subspecialty is further explained below.

MACHINE LEARNING

Machine learning is the field that focuses on using data and algorithms to imitate the way humans learn using computers, without being explicitly programmed, while gradually improving accuracy. The article “Axisto – an introduction to Machine Learning” takes a closer look at this specialty.

MACHINE LEARNING AND PREDICTIVE ANALYTICS

Predictive analytics and machine learning go hand in hand. Predictive analytics encompasses a variety of statistical techniques, including machine learning algorithms. Statistical techniques analyse current and historical facts to make predictions about future or otherwise unknown events. These predictive analytics models can be trained over time to respond to new data.

The defining functional aspect of these engineering approaches is that predictive analytics provides a predictive score (a probability) for each “individual” (customer, employee, patient, product SKU, vehicle, part, machine, or other organisational unit) to determine, to inform or influence organisational processes involving large numbers of “individuals”. Applications can be found in, for example, marketing, credit risk assessment, fraud detection, manufacturing, healthcare and government activities, including law enforcement.

Unlike other Business Intelligence (BI) technologies, predictive analytics is forward-looking. Past events are used to anticipate the future. Often the unknown event is of significance in the future, but predictive analytics can be applied to any type of “unknown,” be it past, present, or future. For example, identifying suspects after a crime has been committed, or credit card fraud if it occurs. The core of predictive analytics is based on capturing relationships between explanatory variables and the predicted variables from past events, and exploiting them to predict the unknown outcome. Of course, the accuracy and usefulness of the results strongly depends on the level of data analysis and the quality of the assumptions.

Machine Learning and predictive analytics can make a significant contribution to any organisation, but implementation without thinking about how they fit into day-to-day operations will severely limit their ability to deliver relevant insights.

To extract value from predictive analytics and machine learning, it’s not just the architecture that needs to be in place to support these solutions. High-quality data must also be available to nurture them and help them learn. Data preparation and quality are important factors for predictive analytics. Input data can span multiple platforms and contain multiple big data sources. To be usable, they must be centralised, unified and in a coherent format.

To this end, organisations must develop a robust approach to monitor data governance and ensure that only high-quality data is captured and stored. Furthermore, existing processes need to be adapted to include predictive analytics and machine learning as this will enable organisations to improve efficiency at every point in the business. Finally, they need to know what problems they want to solve in order to determine the best and most appropriate model.

NATURAL LANGUAGE PROCESSING (NLP)

Natural language processing is the ability of a computer program to understand human language as it is spoken and written – also known as natural language. NLP is a way for computers to analyse and extract meaning from human language so that they can perform tasks such as translation, sentiment analysis, and speech recognition.

This is difficult, as it involves a lot of unstructured data. The style in which people speak and write (“tone of voice”) is unique to individuals and is constantly evolving to reflect popular language use. Understanding context is also a problem – something that requires semantic analysis from machine learning. Natural Language Understanding (NLU) is a branch of NLP and picks up these nuances through machine “reading understanding” rather than simply understanding the literal meanings. The purpose of NLP and NLU is to help computers understand human language well enough so that they can converse naturally.

All these functions get better the more we write, speak and talk to computers: they are constantly learning. A good example of this iterative learning is a feature like Google Translate that uses a system called Google Neural Machine Translation (GNMT). GNMT is a system that works with a large artificial neural network to translate more smoothly and accurately. Instead of translating one piece of text at a time, GNMT tries to translate entire sentences. Because it searches millions of examples, GNMT uses a broader context to derive the most relevant translation.

Learn how Natural Language Processing works (link resides outside Axisto).

Natural language processing – understanding people – is key to AI justifying its claim to intelligence. New deep learning models are constantly improving the performance of AI in Turing tests. Google’s Director of Engineering Ray Kurzweil predicts AIs will “reach human levels of intelligence by 2029“(link resides outside Axisto).

By the way, what people say is sometimes very different from what people do. Understanding human nature is by no means easy. More intelligent AIs expand the perspective of artificial consciousness, opening up a new field of philosophical and applied research.

SPEECH

Speech recognition is also known as automatic speech recognition (ASR), computer speech recognition or speech-to-text. It is a capability that uses natural language processing (NLP) to process human speech in a written format. Many mobile devices incorporate speech recognition into their systems to perform voice searches, e.g. Siri from Apple.

An important area of ​​speech in AI is speech-to-text, the process of converting audio and speech into written text. It can help visually or physically impaired users and can promote safety with hands-free operation. Speech-to-text tasks contain machine learning algorithms that learn from large datasets of human voice samples to arrive at adequate usability quality. Speech-to-text has value for businesses because it can help transcribe video or phone calls. Text-to-speech converts written text into audio that sounds like natural speech. These technologies can be used to help people with speech disorders. Polly from Amazon is an example of a technology that uses deep learning to synthesise human-sounding speech for the purposes of e-learning and telephony, for example.

Speech recognition is a task where speech is received by a system through a microphone and checked against a database of large pattern recognition vocabulary. When a word or phrase is recognised, it will respond with the corresponding verbal response or a specific task. Examples of speech recognition include Apple’s Siri, Amazon’s Alexa, Microsoft’s Cortana, and Google’s Google Assistant. These products must be able to recognise a user’s speech input and assign the correct speech output or action. Even more sophisticated are attempts to create speech based on brain waves for those who cannot speak or have lost the ability to speak.

EXPERT SYSTEMS

An expert system uses a knowledge base about its application domain and an inference engine to solve problems that normally require human intelligence. An interference engine is a part of the system that applies logical rules to the knowledge base to derive new information. Examples of expert systems include financial management, business planning, credit authorisation, computer installation design, and airline planning. For example, an expert traffic management system can help design smart cities by acting as a “human operator” to relay traffic feedback for appropriate routes.

A limitation of expert systems is that they lack the common sense people have, such as an understanding of the limits of their skills and how their recommendations fit into the bigger picture. They lack the self-awareness of people. Expert systems are not a substitute for decision makers because they lack human capabilities, but they can dramatically ease the human work required to solve a problem.

PLANNING SCHEDULING AND OPTIMALISATION

AI planning is the task of determining how a system can best achieve its goals. It is choosing sequential actions that have a high probability of changing the state of the environment incrementally in order to achieve a goal. These types of solutions are often complex. In dynamic environments with constant change, they require frequent trial-and-error iteration to fine-tune.

Planning is making schedules, or temporary assignments of activities to resources, taking into account goals and constraints. To design an algorithm, planning determines the sequence and timing of actions generated by the algorithm. These are typically performed by intelligent agents, autonomous robots and unmanned vehicles. When designed properly, they can solve organisational scheduling problems in a cost-effective way. Optimisation can be achieved by using one of the most popular ML and Deep Learning optimisation strategies: gradient descent. This is used to train a machine learning model by changing its parameters in an iterative way to minimise a particular function to the local minimum.

See also our “More Optimal Planning and Optimalisation Software”.

ROBOTICS

Intelligence is at one end of the Intelligent Automation spectrum, while Robotic Process Automation (RPA), software robots that mimic human actions, is at the other end. One is concerned with replicating how people think and learn, while the other is concerned with replicating how people do things. Robotics develops complex sensor-motor functions that enable machines to adapt to their environment. Robots can sense the environment using computer vision.

The main idea of ​​robotics is to make robots as autonomous as possible through learning. Despite not achieving human-like intelligence, there are still many successful examples of robots performing autonomous tasks such as carrying boxes, picking up and putting down objects. Some robots can learn decision making by associating an action with a desired outcome. Kismet, a robot at M.I.T.’s Artificial Intelligence Lab, learns to recognise both body language and voice and respond appropriately. This MIT video (link is outside Axisto) gives a good impression.

COMPUTER VISION

Computer vision is an area of ​​AI that trains computers to capture and interpret information from image and video data. By applying machine learning (ML) models to images, computers can classify and respond to objects, such as facial recognition to unlock a smartphone or approve intended actions. When computer vision is coupled with Deep Learning, it combines the best of both worlds: optimised performance combined with accuracy and versatility. Deep Learning offers IoT developers greater accuracy in object classification.

Machine vision goes one step further by combining computer vision algorithms with image registration systems to better control robots. An example of computer vision is a computer that can “see” a unique series of stripes on a universal product code and scan it and recognize it as a unique identifier. Optical Character Recognition (OCR) uses image recognition of letters to decipher paper printed records and/or handwriting, despite the wide variety of fonts and handwriting variations.

CHALLENGE

A container terminal reached the limits of its capacity due to a further increase in the number of units to be processed. The terminal also had to become more attractive for ships to dock by faster loading and unloading for shorter waiting times. Furthermore, container ships are getting bigger, increasing complexity and time pressure at the terminal.

The assignment was to increase efficiency to make more inbound and outbound truck movements possible and to shorten ship waiting times.

APPROACH

Based on data from the ERP system regarding plan and actual over a representative period, the current working method of the terminal was reconstructed in our Planning Platform. The actual operation was visualised and animated, allowing the movements of each individual container to be tracked from position to position. The reconstruction was validated and further fine-tuned in a highly interactive process with the client.

Subsequently, with our Planning Platform, the current operational performance of the terminal was determined based on jointly identified Key Performance Indicators (KPIs), such as the mooring time per barge, the number of crane movements in/out and the number of truck movements in/out. Subsequently, a simulation of an optimised operation was performed using the exact same dataset and boundary conditions. The comparison of the KPIs of the current and optimised operations immediately gave a clear picture of the improvement potential.

In close collaboration with the client, the plan for a number of containers was then optimised step-by-step until the total was finally optimised. After each step, the improvement was measured against the identified KPIs.

 

WHAT IS MACHINE LEARNING?

This article covers the introduction to machine learning and the directly related concepts.

Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed. It is a subset of artificial intelligence (AI) and computer science that focuses on the use of data and algorithms to imitate the way humans learn, and in doing so it gradually improving its accuracy. By using statistical learning (link resides outside Axisto) and optimisation methods, computers can analyse datasets and identify patterns in the data. Machine learning techniques leverage data mining to identify historic trends to inform future models.

According to the University of California, Berkeley, the typical supervised machine learning algorithm consists of three main components:

  • A decision process: A recipe of calculations or other steps that takes in the data and returns a guess at the kind of pattern in the data that the algorithm is looking to find.
  • An error function: A method of measuring how good the guess was by comparing it to known examples (when they are available). Did the decision process get it right? If not, how do you quantify how bad the miss was?
  • An updating or optimisation process: The algorithm looks at the miss and then updates how the decision process comes to the final decision so that the miss will not be as great the next time.

Machine learning is a key component in the growing field of data science. Using statistical methods, algorithms are trained to make classifications or predictions and uncover key insights from data.

HOW DOES A MACHINE LEARNING ALGORITHM LEARN?

The technology company Nvidia (link resides outside Axisto) distinguishes four learning models that are defined by the level of human intervention:

  • Supervised learning: If you are learning a task under supervision, someone is with you, prompting you and judging whether you’re getting the right answer. Supervised learning is similar in that it uses a full set of labelled* data to train an algorithm.
  • Unsupervised learning: In unsupervised learning, a deep learning model is handed a dataset without explicit instructions on what to do with it. The training dataset is a collection of examples without a specific desired outcome or correct answer. The neural network then attempts to automatically find structure in the data by extracting useful features and analysing its structure. It learns by looking for patterns.
  • Semi-supervised learning: Semi-supervised learning is, for the most part, just what it sounds like: a training dataset with both labelled and unlabelled data. This method is particularly useful in situations where extracting relevant features from the data is difficult or where labelling examples is a time-intensive task for experts.
  • Reinforcement learning: In this kind of machine learning, AI agents are trying to find the optimal way to accomplish a particular goal or improve the performance of a specific task. If the agent takes action that moves the outcome towards the goal, it receives a reward. To make its choices, the agent relies both on learnings from past feedback and on exploration of new tactics that may present a larger payoff. The overall aim is to predict the best next step that will earn the biggest final reward. Just as the best next move in a chess game may not help you eventually win the game, the best next move the agent can make may not result in the best final result. Instead, the agent considers the long-term strategy to maximise the cumulative reward. It is an iterative process: the more rounds of feedback, the better the agent’s strategy becomes. This technique is especially useful for training robots to make a series of decisions for tasks such as steering an autonomous vehicle or managing inventory in a warehouse.

* Fully labelled means that each example in the training dataset is tagged with the answer the algorithm should produce on its own. So a labelled dataset of flower images would tell the model which photos were of roses, daisies and daffodils. When shown a new image, the model compares it to the training examples to predict the correct label.

In all four learning models, the algorithm learns from datasets based on human rules or knowledge.

In the domain of artificial intelligence, you will come across the terms machine learning (ML), deep learning (DL) and neural networks (artificial neural networks – ANN). Artificial intelligence and machine learning are often used interchangeably, as are machine learning and deep learning. But, in fact, these terms are progressive subsets within the larger AI domain, as illustrated in Figure 1.

Axisto - Introduction to Machine Learning
Figure 1. Artificial neural networks are a subset of deep learning, which is a subset of machine learning, which in turn is a subset of artificial intelligence.

Therefore, when discussing machine learning, we must also consider deep learning and artificial neural networks.

THE DIFFERENCE BETWEEN MACHINE LEARNING AND DEEP LEARNING IS THE WAY AN ALGORITHM LEARNS

Unlike machine learning, deep learning does not require human intervention to process data. Deep learning automates much of the feature extraction piece of the process, eliminating some of the manual human intervention required, which means it can be used for larger data sets.

“Non-deep” machine learning is more dependent on human intervention for the learning process to happen because human experts must first determine the set of features so that the algorithm can understand the differences between data inputs, and this usually requires more structured data for the learning process.

“Deep” machine learning can leverage labelled datasets, also known as supervised learning, to inform its algorithm. However, it does not necessarily require a labelled dataset. It can ingest unstructured data in its raw form (e.g., text and images), and it can automatically determine the set of features that distinguishes between different categories of data. Figure 2 illustrates the difference between machine learning and deep learning.

Axisto - Machine Learning and Deep Learning
Figure 2. The difference between machine learning and deep learning.

Deep learning uses multiple layers to progressively extract higher-level features from the raw input. For example, in image processing, lower layers may identify edges, while higher layers may identify the concepts relevant to a human, such as digits or letters or faces.

In deep learning, each level learns to transform its input data into a slightly more abstract and composite representation. In an image-recognition application, the raw input may be a matrix of pixels. The first representational layer may abstract the pixels and encode edges; the second layer may compose and encode arrangements of edges; the third layer may encode a nose and eyes; and the fourth layer may recognise that the image contains a face. Importantly, a deep learning process can learn which features to optimally place in which level on its own. This does not fully eliminate the need for manual-tuning – for example, varying numbers of layers and layer sizes can provide different degrees of abstraction. The word “deep” in “deep learning” refers to the number of layers through which the data is transformed.

NEURAL NETWORKS

An artificial neural network (ANN) is a computer system designed to work by classifying information in the same way a human brain does, while still retaining the innate advantages they hold over us, such as speed, accuracy and lack of bias. For example, it can be taught to recognise images and classify these according to elements they contain. Essentially, it works on a system of probability – based on data fed to it, it can make statements, decisions or predictions with a degree of certainty. The addition of a feedback loop enables “learning” – by sensing or being told whether its decisions are right or wrong, it modifies the approach it takes in the future.

Artificial neural networks consist of a multilevel learning of detail or representations of data. Through these different layers, information passes from low-level parameters to higher-level parameters. These different levels correspond to various levels of data abstraction, leading to learning and recognition. An ANN is based on a collection of connected units called artificial neurons (analogous to biological neurons in a biological brain). Each connection (synapse) between neurons can transmit a signal from one neuron to another neuron. The receiving (postsynaptic) neuron can process the signal(s) and then signal to neurons connected to it downstream. Neurons may have state, generally represented by real numbers, typically between 0 and 1. Neurons and synapses may also have a weight that varies as learning proceeds, which can increase or decrease the strength of the signal that it sends downstream. Typically, neurons are organised in layers, as illustrated in Figure 3. Different layers can perform various kinds of transformations on their inputs. Signals travel from the first (input), to the last (output) layer, possibly after traversing the layers multiple times.

Axisto - Artificial Neural Network
Figure 3. Layers in an artificial neural network.

USES OF MACHINE LEARNING

There are many applications for machine learning; it is one of the three key elements of Intelligent Automation and a autonomous operating model within Industry 4.0. The computer programs can read text and work out whether the writer was making a complaint or offering congratulations. They can listen to a piece of music, decide whether it is likely to make someone happy or sad, and find other pieces of music to match the mood. In some cases, they can even compose their own music that either expresses the same themes or is likely to be appreciated by the admirers of the original piece.

Neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games, and medical diagnosis. As of 2017, neural networks typically have a few thousand to a few million units and millions of connections. Although this number is several orders of magnitude less than the number of neurons in a human brain, these networks can perform many tasks at a level beyond that of humans (e.g., recognising faces, playing “Go”).

 

INVESTING IN INDUSTRY 4.0 TECHNOLOGIES YIELDS SIGNIFICANT BENEFITS

In 2018 the World Economic Forum (WEF) launched an initiative, Shaping the Future of Advanced Manufacturing and Production, to demonstrate the true potential of Industry 4.0 technologies to transform the very nature of manufacturing. Learnings from 69 frontrunner companies boosting 450 use cases in action reveal that organisations investing in Industry 4.0 technology are realising significant improvements in productivity, sustainability, operating cost, customisation and speed to market.

Here are just a few numbers from the 450 use cases: labour productivity up by 32% to 86%, order lead times down by 29% to 82%, field quality up 32%, manufacturing costs down 33%, OEE up 27%, new product design lead time down 50%.

Additionally, frontrunner companies showed that by investing in Industry 4.0 technologies they can solve business problems while simultaneously reducing environmental detractors such as waste, consumption and emissions. While the greatest environmental benefits come from core green sustainability initiatives (such as commitments to renewable energy), Industry 4.0 use cases have shown significant environmental impact as well, reducing energy consumption by more than one-third and water use by more than one-quarter.

Out of the 69 frontrunners within the WEF initiative that exist to date across the globe, 64% have been able to drive growth by adopting Industry 4.0 solutions. In all those cases, with little to no capital expenditure, they were able to unlock capacity and grow by coupling some of the technology solutions together with a much more flexible production system. The business case is big and the pay back is short, both for large companies and for SMEs.

HOWEVER, MOST COMPANIES STRUGGLE TO IMPLEMENT

Most companies struggle to start and scale an Industry 4.0 transformation because they lack people with the right skills and knowledge and because of a limited understanding of technology and vendor landscape. On average, 72% of companies don’t get beyond the pilot phase.

AIMA enables manufacturing companies to understand where they stand and to design an implementation roadmap that helps them start their Industry 4.0 implementation journey or progress to the next level. AIMA assesses your operations along eight elements, as shown in Figure 1.

Axisto - The AIMA comprises 8 elements with in total 33 categories
Figure 1. The AIMA comprises 8 elements with in total 33 categories

In total, the eight elements are made up of 33 categories (see Figure 2), and each category spans the four fundamental building blocks of Industry 4.0: processes, technology, people and competencies, and organisation.

Figure 2. The eight elements of the AIMA with the 33 categories, each spanning processes, technology, people and competencies, and organisation.
Figure 2. The eight elements of the AIMA with the 33 categories, each spanning processes, technology, people and competencies, and organisation.

HOW AIMA SUPPORTS YOU ON YOUR INDUSTRY 4.0 IMPLEMENTATION JOURNEY

AIMA helps you:

  • build knowledge
  • tear down interdepartmental walls and create strategic alignment
  • understand where your operations stand – what is strong and must be maintained
    and what needs to be improved
  • understand what your key areas are and what you need to focus on.

AIMA helps you establish a company-specific interpretation of key principles and concepts. It creates an improved case for change and provides more momentum to implement the change.

HOW AIMA WORKS

AIMA consists of four steps:

  • Preparation – get to know the members of the leadership team and understand: the vision and strategy, how the team views market developments, challenges, opportunities and how the company develops within this context and inventory of expectations for the next days.
  • The first workshop day – identification of and alignment on the case for change: introduction to Industry 4.0 and explore how it affects the strategy (execution), test the extent of alignment within the leadership team and identify the (/ check if there is a) case for change.
  • The second workshop day – the Industry 4.0 Maturity Assessment: assessing operations using a selection from the AIMA categories, prioritising the KPIs and identifying the focus areas.
  • The third workshop day – design of the implementation roadmap: sequence of steps that address processes, technology, people & capabilities and organisation, identification of risks and design of a risk mitigation plan.

Focusing on these areas will accelerate performance improvements in operations. AIMA provides the insights, designs an implementation roadmap and is a strategic tool to regularly assess progress and refine your roadmap based on new insights. Starting at the operations leadership level allows us to create an overall framework. AIMA is then deployed at the next level down into respective factories. Again, we begin with a preparation; followed by three workshop days, now with the factory leadership team:

  • Preparation – get to know the members of the factory leadership team and understand: the factory vision and strategy, how the team views market developments, challenges, opportunities and how the factory develops within this context and inventory of expectations for the next days.
  • The first workshop day – identification of and alignment on the case for change: introduction to Industry 4.0 and explore how it affects the strategy (execution), test the extent of alignment within the factory leadership team and identify the (/ check if there is a) case for change.
  • The second workshop day – the Industry 4.0 Maturity Assessment: assessing operations using a selection from the AIMA categories, prioritising the KPIs and identifying the focus areas.
  • The third workshop day – design of the implementation roadmap: prioritisation of factory KPIs and the identification of focus areas, sequence of steps that address processes, technology, people & capabilities and organisation, identification of risks and design of a risk mitigation plan.

Making improvements in these focus areas will make the biggest impact on the factory’s performance within the overall framework. Leveraging this cascaded approach creates the biggest wins for the whole business rather than just a sub-optimisation of an individual factory.

AIMA OUTCOMES FOR YOUR ORGANISATION

AIMA provides four key outcomes:

  • Understanding of Industry 4.0, its key principles and concepts, and how they affect strategy (execution)
  • Alignment within the operations leadership team and factory leadership teams
  • Understanding of your Industry 4.0 maturity level / readiness
  • Priority of focus areas to create short-term business value within a long-term context

PUT YOUR PEOPLE AT THE CENTRE OF YOUR INDUSTRY 4.0 IMPLEMENTATION

AIMA will generate initial momentum. However, it is worth noting that any Industry 4.0 implementation will only be successful if you put your people at the centre of it.

The biggest challenge for a company is not in choosing the right technology, but in having a lack of digital culture and skills in the organisation. Investing in the right technologies is important – but the success or failure does not ultimately depend on specific sensors, algorithms or analysis programs.

The crux lies in a wide range of people-oriented factors. Axisto supports you in the development of a robust digital culture and ensures change is developed from within and is driven by clear leadership from the top.

WHY AXISTO?

Axisto was founded in 2006 to help companies accelerate their operational performance – fast, measurable and lasting. We have executed more than 150 projects across Europe.

We have concrete on-the-ground experience, which is why our approach is practical and pragmatic. We combine subject-matter expertise with excellent change management skills.

We see change through and do whatever it takes to make our clients successful.

 

THE GOAL OF USING INTELLIGENT AUTOMATION

The goal of using Intelligent Automation (IA) is to achieve better business outcomes through streamlining and scaling decision making across businesses. IA adds value to business by increasing process speed, reducing costs, improving compliance and quality, increasing process resilience and optimising decision results. Ultimately, it improves customer and employee satisfaction and improves cash flow and EBITDA and decreases working capital.

WHAT IS INTELLIGENT AUTOMATION?

IA is a concept leveraging a new generation of software based automation. It combines methods and technologies to execute business processes automatically on behalf of knowledge workers. This automation is achieved by mimicking the capabilities of knowledge that workers use in performing their work activities (e.g., language, vision, execution and thinking & learning).IA effectively creates a software-based digital workforce that enables synergies by working hand-in-hand with the human workforce.

On the simpler end of the spectrum, IA helps perform the repetitive, low-value add and tedious work activities such as reconciling data or digitising and processing paper invoices. On the other end, IA augments workers by providing them with superhuman capabilities. For example, it provides the ability to analyse millions of data points from various sources in a few minutes and generate insights from.

THREE KEY COMPONENTS OF INTELLIGENT AUTOMATION

IA consists of three key components:

Axisto - Process MiningBusiness Process Management with Process Mining to provide greater agility and consistency to business processes.

 

Axisto - Robotic Process AutomationRobotic Process Automation (RPA). Robotic process automation uses software robots, or bots, to complete repetitive manual tasks. RPA is both the gateway to artificial intelligence and can leverage insights from Artificial Intelligence to handle more complex tasks and use cases.

Axisto - Artificial IntelligenceArtificial Intelligence. By using machine learning and complex algorithms to analyse structured and unstructured data, businesses can develop a knowledge base and formulate predictions based on that data. This is the decision engine of IA.

WHERE AND HOW TO START WITH INTELLIGENT AUTOMATION?

Implementing Intelligent Automation might come across as a daunting endeavour, but it doesn’t need be. Like any business leader, you will have a keen eye on accelerating operations performance, which in essence is improving the behaviour and outcomes of your business processes. Process Mining is a perfect tool to help you with that.

Process Mining is a data-driven analysis technique, i.e., analysis software, to objectively analyse and monitor business processes. It does this based on transactional data that is recorded in a company’s business information systems. The analysis software is system agnostic and doesn’t need any adaptation of your systems. Process Mining provides fact-based insight into how processes run in daily reality: all process variants (you will be surprised how many variations of one process there actually are in your business) and where the key problems and opportunities lie to improve process efficiency and effectiveness.

Process Mining is also an excellent way to prepare the introduction of Robotic Process Automation, which could be the most relevant next step on your IA journey. Process Mining can be purely used as an analysis tool, but it can also be installed permanently to constantly monitor the performance of and the issues in the processes. It is a non-intimidating approach and a gradual implementation of Intelligent Automation.

THE IMPORTANCE OF A COMPANY-WIDE VISION AND SHARED ROADMAP

However, at some point, rather sooner than later, it is important to establish and communicate a comprehensive, company-wide vision for what you want Intelligent Automation to achieve: how will automation deliver value and boost competitive advantage. You need a shared roadmap for a successful implementation that covers processes, technology (including legacy systems), people & competencies and organisation.

Such a shared Intelligent Automation/Industry 4.0 Roadmap ensures a consistent, thoughtful approach to selecting, developing, applying, and evolving the IA/I4.0 structure to achieve the intended impact. The Axisto Industry 4.0 Maturity Assessment (AIMA) is an effective way to create such a shared implementation roadmap.

THE CRUX TO SUCCESS LIES IN A WIDE-RANGE OF PEOPLE-ORIENTED FACTORS

Axisto - Change InsiderImportantly, the biggest challenge for a company is not in choosing the right technology, but in having a lack of digital culture and skills in the organisation. Investing in the right technologies is important – but the success or failure does not ultimately depend on specific sensors, algorithms or analysis programs. The implementation and scaling of Intelligent Automation/Industry 4.0 requires a fundamental shift in mindset and behaviours at all levels in the organisation. The crux to success lies in a wide range of people-oriented factors.

Industry 4.0 means the growing together of the digital and manufacturing industries. All physical assets are digitised and integrated into digital ecosystems with partners in the value chain.

Industry 4.0 represents a huge step in performance. You can improve your speed, flexibility and productivity by 40%. You can develop a new business strategy and take the opportunity to innovate your products and services portfolio.

Axisto works with you to map the digital maturity of your business with our AIMA (Axisto Industry 4.0 Maturity Assessment) and choose the elements that will deliver the most value in line with your vision. Well-chosen pilots will help you get on the learning curve and achieve some initial success. You will gain insights into the skills gap, and this can direct your HR strategy. We can help you to properly organise data analytics and develop your organisation more digitally. Axisto’s experience will ensure you avoid any pitfalls on your journey to becoming a digital enterprise.

Importantly, the biggest challenge for a company is not in choosing the right technology, but in having a lack of digital culture and skills in the organisation. Investing in the right technologies is important – but the success or failure does not ultimately depend on specific sensors, algorithms or analysis programs. The crux lies in a wide range of people-oriented factors. Axisto supports you in the development of a robust digital culture and ensures change is developed from within and driven by clear leadership from the top.

An autonomous operating model is not just a digital upgrade of your current operating model. It is a radically different way of conducting your business.

INTEGRATED PERFORMANCE MANAGEMENT

Primary and support business processes are integrated. This allows the financial department to act in a much more agile manner. The cash flow is visible on an ad-hoc basis, which improves planning and analysis abilities. A forecast supported by the IT system replaces manual forecasts. Once determined, KPIs make controlling easier through automated warning messages, thus allowing immediate intervention to take place.

The budget process is changed and no longer runs along the individual business functions (such as Sales, Marketing, Production, IT), but along value drivers (sales quantities linked to market data, prices in combination with customer clusters, etc.). At any time, the balance and P&L for the company as a whole and for each of the departments can be determined. This makes it possible to sail sharply close to the wind.

The entire supply chain uses a single point of truth for real-time information The transparency makes it possible to simulate different scenarios quickly and easily, but ultimately people make the decisions. The effect of decisions is calculated and communicated in real-time throughout the end-to-end supply chain. Margin, order cycle time and cash can be predictively optimised based on a holistic view of supply chain performance, stock levels and trend analyses.

MOBILE

Mobile devices are an essential interaction channel for both customers and employees. As a result, the management and control of the integration of different mobile devices and of the mobile applications are strategic factors. New and existing mobile technologies are easy to integrate.

AGILE COLLABORATION

Collaboration is largely multidisciplinary and without hierarchy. Knowledge and skills are not things that sets you apart from others in the company – they are things you make available to the team.

Collaboration must be able to be set up ad hoc at any time, from anywhere – even across geographic boundaries. Active exchange of ideas, knowledge and expertise requires an appropriate incentive system. This system focuses on the group outcome and allows them to participate in the overall success.

Social media and collaboration technologies are a central element of communication, knowledge transfer and teamwork. This applies to interaction with customers, employees and business partners. The technologies are used for the interactive exchange of information and content, thus making collaboration more effective, and they are increasingly focused on establishing interaction patterns in a digital culture.

The aim of redesigning the office environment is to increase cooperation and creativity in the company. This includes, for example, creating zones of creativity in offices, building open structures where there are no fixed desks and integrating the employee’s own home office.

STRATEGIC WORKFORCE MANAGEMENT

Digitisation requires new skills and abilities on the part of employees. The development of these competencies in the workforce requires strategic planning to address the requirements in the long term. The use of analysis methods not only enables the optimised deployment of employees, but also clarifies the question about which skills are needed now and in the future and how to get them as quickly as possible.

STRATEGIC WORKFORCE DEVELOPMENT

Knowledge and experience are becoming obsolete at an ever-increasing rate, and roles and tasks are constantly changing. The employees are constantly challenged to learn new things, to participate in training for new tasks and to adapt to role changes.

Our More Optimal Platform provides companies with solutions to model, plan and optimise their business operations from end to end. Our platform can handle scenarios that are considered too complex for other software solutions: planning and optimising complex production value networks, optimising intricate logistics operations, and planning and scheduling highly diverse workforces.

Key capabilities include predictive and prescriptive data analytics, forecasting, what-if scenario planning, collaborative decision-making, disruption handling and production scheduling.
The platform is hosted in the cloud and no separate tooling is required. You can model supply chain applications in your browser where end-users use it as well – what you see is what you get!

Supply chain modelling requires no code or specific calculations, and visualisation can be created using a small amount of easily understood code.

Powerful algorithmic building blocks for optimisation come out of the box and are fully integrated in the platform.

Serverless scaling enables multiple algorithms to be run in parallel so that large supply chain conundrums can be tackled.

Maps, 3D visuals, Gantt charts and other charts come out of the box and can easily be configured by the modeler. Custom visuals can be created using low-code and may be shared with other modelers in the More Optimal community.

The calculation engine makes sure you can focus on what needs to be calculated; dependencies between calculated fields are automatically handled by the platform.